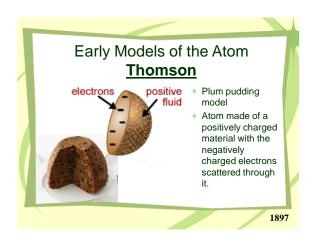
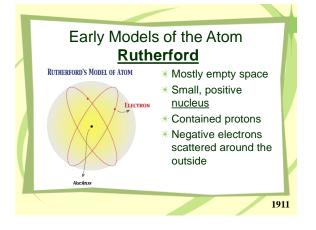
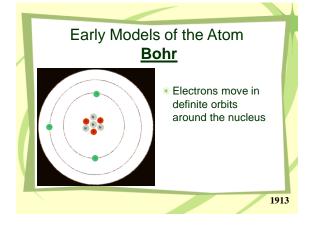


Models

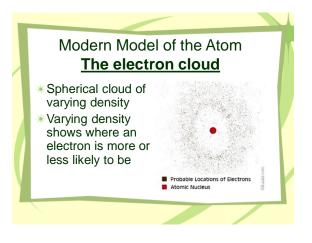
Models are often used for things that are too small or too large to be observed or that are too difficult to be understood easily

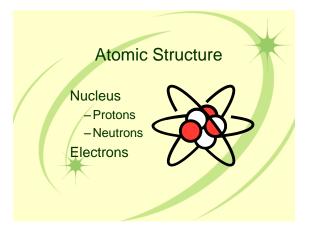

Models

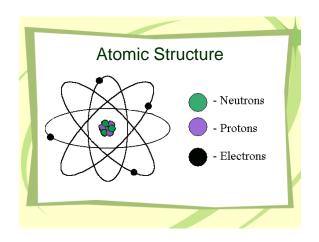

- *In the case of atoms, scientists use large models to explain something that is very small
- Models of the atom were used to explain data or facts that were gathered experimentally.
- *So, these models are also theories



Early Models of the Atom Dalton

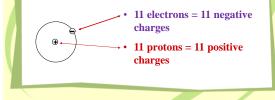

- * All elements are composed of indivisible particles.
- \ast Atoms of the same element are the same
- * Atoms of different elements are different.
- * Compounds consisted of atoms of different elements combined together





The nucleus of every atom (except hydrogen) contains two particles:

- Protons (+ charge / mass 1amu)
- Neutrons (no charge / mass 1amu)


In energy levels outside the nucleus we find:

• Electrons (– charge / mass 1/2000amu)

Most stable atoms are neutral (no charge) because the positive charge of the nucleus is equal to all of the negative charges of the electrons added together.

Your Turn

Member A: Atomic Number Expert.

- What <u>Atomic Number</u> means. Explain how atomic number is found using the periodic table and relate atomic number to number of electrons and protons.
- Member M: Mass Number Expert
- What <u>Mass Number</u> means. They explained how to find mass number and how it relates to any subatomic particles (proton and neutron).
- Member I: Isotope Expert
- What an <u>Isotope</u> is. How isotopes of one element are the same and how they are different.
- Member N: Nuclear Atom Expert
 - This person was responsible for teaching the other members of the group how to show Atomic Number and Mass Number using the Nuclear Atom shorthand and the Isotope shorthand.

Expert Review

Member A: Atomic Number Expert. – What <u>Atomic Number</u> means. Member M: Mass Number Expert – What <u>Mass Number</u> means. Member I: Isotope Expert

- What an <u>Isotope</u> is.
- Member N: Nuclear Atom Expert
- show Atomic Number and Mass Number using shorthand

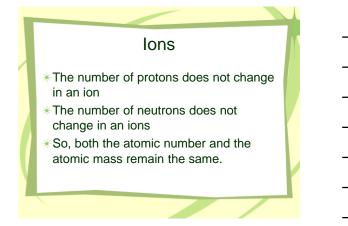
Describing Atoms

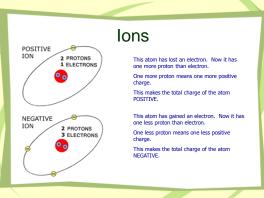
- *Atomic Number = number of protons
- *In a neutral atom, the # of protons = the # of electrons

Describing Atoms

*Mass Number - equal to the number of protons plus neutrons.

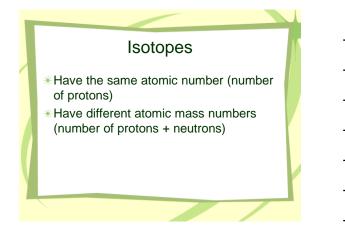
Describing Atoms

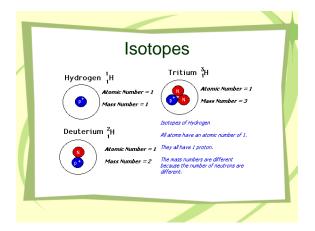

*Atomic Weight - average mass of the naturally occurring isotopes of an element.

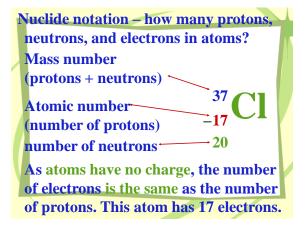

lons

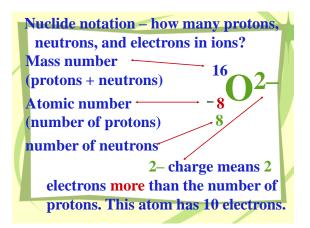
- *An atom that carries an electrical charge is called an **ion**
- * If the atom loses electrons, the atom becomes positively charged (because the number of positively charged protons will be more the number of electrons)

lons

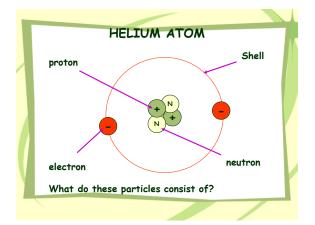

- *An atom that carries an electrical charge is called an **ion**
- If an atom gains electrons, the atom becomes negatively charged (more negative charges than positive charges)



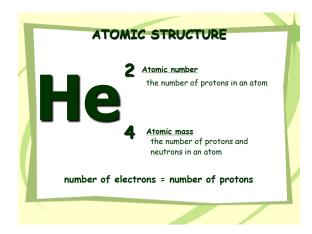




- *The number of protons for a given atom never changes.
- *The number of neutrons can change.
- *Two atoms with different numbers of neutrons are called **isotopes**







Г	ATO	MIC STRUCT	URE	
1	Particle	Charge	Mass	
	proton	+ ve charge	1	
	neutron	No charge	1	
	electron	-ve charge	nil	ľ

ATOMIC STRUCTURE

Electrons are arranged in Energy Levels or Shells around the nucleus of an atom.

•	first shell	a maximum of 2 electrons
---	-------------	---------------------------------

- second shell a maximum of **8** electrons
- third shell a maximum of **8** electrons