

RESPIRATORY SYSTEM

PRIMARY FUNCTIONS

- Exchange gases (oxygen and CO2)
- Produce vocal sounds
- Sense of smell
- Regulation of blood PH

Respiration - process of gas exchange

- 1. Movement of air into lungs
- 2. Gas exchange between blood and air (external respiration)
- 3. Gas transport in blood
- Gas exchange between blood and body cells (internal respiration)

*Cellular Respiration - oxygen use and CO2 production at a cellular level

Organs of the Respiratory System

Conducting Passages

Main organs of the upper and lower respiratory system

The NOSE bones and cartilage support nose, two openings (nostrils), hair filters large particles

Nasal Cavity – hollow space behind the nose

<u>Nasal septum</u> – divides the nose (bone)

Deviated nasal septum

Paranasal Sinuses spaces within the bones

JOB: to reduce the weight of skull and are resonant chambers for voice.

Warming of air and inclusion of Mucus Membrane warms and moistens air, also traps particles (dust)

> *particles go to stomach

<u>Pharynx</u> – behind the oral cavity, between the nasal cavity and larynx (space, not a structure)

<u>Larynx</u> –

enlargement at the top of the trachea and below pharynx, conducts air in and out of trachea, houses vocal cords

composed of muscles and cartilages

- <u>false vocal folds</u> (do not produce sound) help close airway during swallowing
- <u>true vocal folds</u> (produce sound) – changing shape of the pharynx, and oral cavity changes sounds into words
- Contracting and relaxing muscles changes pitch (increased tension = higher pitch)

<u>Glottis</u> – triangular slit that opens during breathing/talking, and closes during swallowing

<u>Epiglottis</u> – flaplike structure that stands upright, allows air to enter larynx, during swallowing it presses downward and prevents food from entering air passages

Trachea

Anatomy of the Trachea

Connects larynx to lungs

Primary bronchii > bronchioles > alveoli

ALVEOLI

LUNGS - spongy tissue that sit within the pleural cavity

Right Lung = 3 lobes

Left Lung = 2 lobes

Serous fluid Iubricates lungs during breathing

Hilum of trachea

Breathing

Diaphragm contracts than releases

ATMOSPHERIC PRESSURE = 760 Hg

Pressure is necessary for breathing, which is why it is difficult to breathe in high altitudes and also why a punctured lung can be dangerous.

A hole in the pleural cavity can cause the lung to collapse or deflate

Pneumothorax = collapsed lung

Pneumothorax

Respiratory Air Volumes

Spirometry - measures the amount (volume) of air moving in and out of the lungs

Respiratory Cycle - 1 inspiration and 1 expiration

Factors Affecting Breathing

*Chemosensitive areas – detect concentrations of chemicals like carbon dioxide and hydrogen

1. Rise in CO2

Low blood oxygen (peripheral chemoreceptors, carotid and aortic bodies, sense changes)

Inflation reflex – regulates the depth of breathing, prevents overinflation of the lungs

4. Emotional upset, fear and pain

